Cover Image

Nanobiotics: Challenging the anti-microbial perspective - The game changer?

Deepak Narang, Jeevan Singh Tityal, Amit Jain, Reena Kulshreshtra, Fatima Khan

Abstract


Antibiotics are the most important medical inventions in human history and are the invaluable weapons to fight against various infectious diseases. Multi drug resistant microorganisms are becoming a serious issue and increasingly public health problem in present day scenario. Antibiotics are becoming less useful due to increasing bacterial resistance. Development of new and more powerful antibiotics leading to drastic pathogens response by developing resistance to the point where the most powerful drugs in our arsenal are no longer effective against them. New strategies for the management of bacterial diseases are urgently needed and nanomaterials can be a very promising approach. Nanobiotics uses nano-sized tools for the successful management bacterial diseases and to gain increased understanding of the complex underlying patho-physiology of disease. (European Science Foundation. Forward Look Nanomedicine: An EMRC Consensus Opinion 2005. Available online: http://www.esf.org (accessed on 15 July 2017). The application of nanotechnologies to medicine, or nanomedicine, which has already demonstrated its tremendous impact on the pharmaceutical and biotechnology industries, is rapidly becoming a major driving force behind ongoing changes in the antimicrobial field. Present review providing important insights on nanobiotics, and their preparation, mechanism of action, as well as perspectives on the opportunities and challenges in nanobiotics.

Keywords


Nanobiotics, bacterial resistance, antibiotics

Full Text:

PDF

References


Andersson, D.I.; Hughes, D. Antibiotic resistance and its cost: Is it possible to reverse resistance Nat. Rev. Microbiol. 2010, 8, 260–271.

D’Costa, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R.; et al., Antibiotic resistance is ancient. Nature 2011, 477, 457–461.

Dos Santos, C.A.; Seckler, M.M.; Ingle, A.P.; Gupta, I.; Galdiero, S.; Galdiero, M.; Gade, A.; Rai, M. Metal nanoparticles: Therapeutical uses, toxicity, and safety issues. J. Pharm. Sci. 2014, 103,1931–1944.

S-J. Chen, M-C. Hsu, C-H. R. King, L. Lin, US Patent No.: US8211909 B2, Issue Date: July 20, 2012, Assignee: TaiGen Biotechnology Co., Ltd, Taiwan.

Rai, M.K.; Deshmukh, S.D.; Ingle, A.P.; Gade, A.K. Metal nanoparticles: The powerful nano weapon against multi drug resistant bacteria. J. Appl. Microbiol. 2012, 112, 841–852.

Tan M.L., Choong P.F., Dass C.R., Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides. 2010 Jan; 31(1):184-93.

Villa CH, Dao T, Ahearn I, Fehrenbacher N, Casey E, Rey DA, Korontsvit T, Zakhaleva V, Batt CA, Philips MR, Scheinberg DA ACS. Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. Nano. 2011 Jul 26; 5(7):5300-11.

Nembrini C, Stano A, Dane KY, Ballester M, van der Vlies AJ, Marsland BJ, Swartz MA, Hubbell JA. Nanoparticle conjugation of antigen enhances cytotoxic T-cell responses in pulmonary vaccination. Proc Natl Acad Sci U S A. 2011 Nov 1; 108(44): E989-97.

Loomba L, Scarabelli T. Metallic nanoparticles and their medicinal potential. Part I: gold and silver colloids. Ther Deliv. 2013 Jul; 4(7):859-73.

Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009 Jan-Feb; 27(1):76-83.

Avalos A., Haza A. I., Mateo D., Morales P. Interactions of manufactured silver nanoparticles of different sizes with normal human dermal fibroblasts. International Wound Journal. 2014 doi: 10.1111/iwj.12244.;

Aditya NP, Vathsala PG, Vieira V, Murthy RS, Souto EB. Advances in nanomedicines for malaria treatment. Adv Colloid Interface Sci. 2013 Dec; 201-202():1-17.

Poulose S, Panda T, Nair PP, Théodore T. Biosynthesis of silver nanoparticles. J Nanosci Nanotechnol. 2014 Feb; 14(2):2038-49.

Panacek A, Kvítek L, Prucek R, Kolar M, Vecerova R, Pizúrova N, Sharma VK, Nevecna T, Zboril R Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B. 2006 Aug 24; 110(33):16248-53.

De Simone S, Gallo AL, Paladini F, Sannino A, Pollini M. Development of silver nano-coatings on silk sutures as a novel approach against surgical infections. J Mater Sci Mater Med. 2014 Sep; 25(9):2205-14.

Allahverdiyev AM, Abamor ES, Bagirova M, Rafailovich M. Antimicrobial effects of TiO (2) and Ag(2)O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol. 2011 Aug; 6(8):933-40.

Wei C, Lin WY, Zainal Z, Williams NE, Zhu K, Kruzic AP, Smith RL, Rajeshwar K. Bactericidal Activity of TiO2 Photocatalyst in Aqueous Media: Toward a Solar-Assisted Water Disinfection System. Environ Sci Technol. 1994 May 1; 28(5):934-8.

Hamal DB, Haggstrom JA, Marchin GL, Ikenberry MA, Hohn K, Klabunde KJ. A multifunctional biocide/sporocide and photocatalyst based on titanium dioxide (TiO2) codoped with silver, carbon, and sulfur. Langmuir. 2010 Feb 16; 26(4):2805-10.

Hydroxyapatite-supported Ag-TiO2 as Escherichia coli disinfection photocatalyst. Pratap Reddy M, Venugopal A, Subrahmanyam M Water Res. 2007 Jan; 41(2):379-86.

Palanikumar L., Ramasamy S. N., Balachandran C. Size-dependent antimicrobial response of zinc oxide nanoparticles. IET Nanobiotechnology. 2014;8(2): 111–117.

Malka E., Perelshtein I., Lipovsky A., et al., Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite. Small. 2013;9(23):4069–4076. doi: 10.1002/smll.201301081.

Huh A. J., Kwon Y. J. ‘Nanoantibiotics’: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release. 2011;156(2):128–145. doi: 10.1016/j.jconrel.2011.07.002.

Chatterjee S., Bandyopadhyay A., Sarkar K. Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. Journal of Nanobiotechnology. 2011;9, article 34 doi: 10.1186/1477-3155-9-34.

Majdalawieh A., Kanan M. C., El-Kadri O., Kanan S. M. Recent advances in gold and silver nanoparticles: synthesis and applications. Journal of Nanoscience and Nanotechnology. 2014;14 (7):4757–4780. doi: 10.1166 /jnn.2014.9526.

Ren G., Hu D., Cheng E. W. C., Vargas-Reus M. A., Reip P., Allaker R. P. Characterisation of copper oxide nanoparticles for antimicrobial applications. International Journal of Antimicrobial Agents. 2009; 33(6): 587–590.

Pelgrift R. Y., Friedman A. J. Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced Drug Delivery Reviews. 2013;65(13-14):1803–1815.

Blecher K., Nasir A., Friedman A. The growing role of nanotechnology in combating infectious disease. Virulence. 2011;2(5):395–401.

Carpenter A. W., Schoenfisch M. H. Nitric oxide release: part II. Therapeutic applications. Chemical Society Reviews. 2012;41(10):3742–3752. doi: 10.1039/c2cs15273h.

Kutner A. J., Friedman A. J. Use of nitric oxide nanoparticulate platform for the treatment of skin and soft tissue infections. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2013;5(5):502–514.

Qiu Z., Yu Y., Chen Z., et al., Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(13):4944–4949.

Ansari M. A., Khan H. M., Khan A. A., Cameotra S. S., Saquib Q., Musarrat J. Interaction of Al2O3nanoparticles with Escherichia coli and their cell envelope biomolecules. Journal of Applied Microbiology. 2014; 116:772–783

Lichter J. A., Rubner M. F. Polyelectrolyte multilayers with intrinsic antimicrobial functionality: the importance of mobile polycations. Langmuir. 2009;25(13):7686–7694.

Hiraki J. Basic and applied studies on ε-polylysine. Journal of Antibacterial and Antifungal Agents. 1995; 23:349–354.

Waschinski C. J., Tiller J. C. Poly(oxazoline)s with telechelic antimicrobial functions. Biomacromolecules. 2005; 6(1):235–243.

Muñoz-Bonilla A., Fernández-García M. Polymeric materials with antimicrobial activity. Progress in Polymer Science. 2012;37(2):281–339. doi: 10.1016/j.progpolymsci.2011.08.005.

Denyer S. P., Stewart G. S. A. B. Mechanisms of action of disinfectants. International Biodeterioration and Biodegradation. 1998;41(3-4):261–268. doi: 10.1016/S0964-8305(98)00023-7.

Srisitthiratkul C., Pongsorrarith V., Intasanta N. The potential use of nanosilver-decorated titanium dioxide nanofibers for toxin decomposition with antimicrobial and self-cleaning properties. Applied Surface Science. 2011;257(21):8850–8856.

El-Shishtawy R. M., Asiri A. M., Abdelwahed N. A. M., Al-Otaibi M. M. In situ production of silver nanoparticle on cotton fabric and its antimicrobial evaluation. Cellulose. 2011;18(1):75–82.

Jadhav S., Gaikwad S., Nimse M., Rajbhoj A. Copper oxide nanoparticles: synthesis, characterization and their antibacterial activity. Journal of Cluster Science. 2011;22(2):121–129. doi: 10.1007/s10876-011-0349-7.

Gordon T., Perlstein B., Houbara O., Felner I., Banin E., Margel S. Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2011;374(1–3):1–8.

Al-Hazmi F., Alnowaiser F., Al-Ghamdi A. A., Aly M. M., Al-Tuwirqi R. M., El-Tantawy F. A new large—scale synthesis of magnesium oxide nanowires: structural and antibacterial properties. Superlattices and Microstructures. 2012;52(2):200–209. doi: 10.1016/j.spmi.2012.04.013.

Martinez L. R., Han G., Chacko M., et al.,Antimicrobial and healing efficacy of sustained release nitric oxide nanoparticles against Staphylococcus aureus skin infection. The Journal of Investigative Dermatology. 2009;129(10):2463–2469. doi: 10.1038/jid.2009.95

Beyth N., Yudovin-Farber I., Bahir R., Domb A. J., Weiss E. I. Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials. 2006; 27 (21):3995–4002.

Hu Y., Du Y., Yang J., Kennedy J. F., Wang X. H., Wang L. S. Synthesis, characterization and antibacterial activity of guanidinylated chitosan. Carbohydrate Polymers. 2007;67(1):66–72. doi: 10.1016/j.carbpol.2006.04.015.




DOI: http://dx.doi.org/10.21746/ijbio.2017.6.10.2

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 International Journal of Bioassays

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

International Journal of Bioassays is a member of the Publishers International Linking Association, Inc. (PILA), CROSSREF and CROSSMARK (USA). Digital Object Identifier (DOI) will be assigned to all its published content.